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Abstract—Optical computing is a promising computing
paradigm due to its ultra-high speed and energy efficiency
for signal processing and transmission. One of the critical
challenges, however, is that its scalability and robustness are
limited by optical power loss. As optical devices lack the
capability of signal restoration and input-output isolation
as CMOS counterparts, optical signal inevitably diminishes
throughout the computation and may even become indis-
tinguishable due to environmental noise. In this paper, we
analyze the scalability and noise robustness challenges facing
photonic integrated circuits, for both logic computing and
neural network applications. Automated design algorithms and
learning methodologies are proposed to resolve these issues
with as small design overhead as possible.

I. INTRODUCTION

Optical computing leverages the property of light to
process information, where the information is in the form
of optical signals sourced by optical lasers and detected
by photo-detectors. Optical computing has been reignited
as a promising alternative to electronics as Moore’s law
winds down. Optics has demonstrated the ability to realize
ultra-high speed and low-power information processing and
communications [1], [2]. Compared with optical computing,
optical interconnects have been more intensively investi-
gated approving the advantage over metal interconnects es-
pecially in intra- and inter-chip communications [2]–[5]. To
catch up with the advancement with optical interconnects,
previous works on optical computing have demonstrated for
two computing paradigms: digital and analog computing.
Digital optical computing performs boolean logic, where
optical switches serve as the core of this paradigm. Analog
optical computing interprets light signals as real or complex
values and performs analog-style computing based on linear
optics using Mach-Zehnder interferometers (MZIs).

For optical logic applications, intensive study has been
made on basic bitwise operations such as (N)AND, (N)OR
and X(N)OR gates [6], [7], algebraic functions such as 1-
bit half and full adders [8]–[10] and switchers [11]–[13]. In
order to implement general and larger-scale logic functions
and pave the way for design-space exploration, various
synthesis schemes are proposed based on virtual gates [14],
and more recently, and-inverter gate (AIG) [15] and binary
decision diagram (BDD) [14], [16]–[19]. However, as op-
tical devices lack the capability of logic-level restoration
and input-output isolation as CMOS transistors, functional
cascadability is very limited. For example, each splitter of
virtual gate-based schemes and Y-branch combiner of AIG

and BDD-based schemes produce a -3dB loss which is
cascaded and inevitably leads to an extremely weak output
signal indistinguishable from noises. The power loss is thus
a key reason for low signal-to-noise ratio (SNR). As the
integration advances, crosstalk noise may also become a
critical issue of the signal integrity. The crosstalk noise has
already been revealed in large-dimensional optical routers
[20] and it would be worthwhile to revisit the solutions
in the new context of computing. The garbage outputs
mentioned in [16] also leads to worse SNR.

For analog computing applications, research efforts have
been made on matrix multiplication [21]–[24], and more
complex, optical neural networks (ONNs), evolving from
the former [25], [26]. ONN distinguishes itself by directly
exploiting linear optics to perform neuromorphic opera-
tions and demonstrated both speed and power efficiency
moving beyond von Neumann architecture. The core and
performance-critical computation of neural networks, ma-
trix multiplication, is a computationally expensive opera-
tion for electronics, but for optics, this computation has
been studied and successfully demonstrated on chip, by
which matrix multiplication can be performed with near-
zero energy using MZIs. Furthermore, as optical signals can
transports in the same channel in parallel via wavelength-
division multiplexing (WDM), this also brings the potential
of scaling the computation bandwidth by tens of times.
However, ONNs also bear the same challenges in both
scalability and robustness. On one hand, scalability is
inevitably impeded by the inherent size of optical devices.
The problem deteriorates as the scale of neural network
models keep increasing to accommodate ever more complex
applications. On the other hand, robustness also becomes
an even critical problem with the scale-up. Specifically,
the phase of each MZI is highly impacted by environ-
mental change, thermal crosstalk, imperfect manufacturing.
The phase error is cascaded throughout the computation
and could aggravate the accuracy by 20% for even small
applications. Preliminary research has studied a slimmed
architecture to reduce the size by reducing the number of
MZIs [26]. It is also interesting to notice that, when applied
phase noise on each MZI, a smaller ONN has shown better
robustness.

As can be concluded, robustness and scalability have
been two major obstacles of building large scale and
practical optical computing circuits. They are also deeply
correlated in the context of optical computing due to the



cascaded power loss or noise error, engendered by the
lack of signal restoration and isolation in optics. This
paper studies the two issues for two representative opti-
cal computing paradigms. The two paradigms also have
shared problems while still demonstrating unique features
that requires different ways to approach. As for optical
logic circuit, we discussed automated design techniques
by introducing restoration using OE/EO converters. For
optical neural network, we studied the noise sensibility un-
der different situations. Automated learning and co-design
methodologies was presented to compensate both issues.

The remainder of this paper is organized as follows.
Section II discusses the scalablity and robustness issues of
optical logic circuit and propose a restoration method by
inserting OE/EO converters. Section III focuses on the two
issues of optical neural networks, providing various charac-
terizations and potential solutions. The paper is concluded
in Section IV.

II. OPTICAL LOGIC CIRCUITS

In this section, we study the first application of optical
computing: optical boolean logic. The scalability and ro-
bustness issues of optical logic circuits are mainly due to
optical power depletion. is a major obstacle to build com-
plicated systems. As demonstrated in the previous synthesis
methodolgies [10], [14], [16], [17], optical devices lack the
capability of signal restoration and input-output isolation as
its CMOS counterparts, optical signal inevitably diminishes
throughout the computation and become indistinguishable
from environmental noise. One solution is to redistribute
the power by logic rewriting [17], however, the method has
limited effectiveness in terms of the potential to improve
both the scalability and robustness, even if the overhead
is not constrained. In this section, we highlight another
more method which introduces optical OE/EO converter
into the synthesis flow for signal restoration. The current
state-of-the art integrated OE/EO converter can achieves
high-speed [12], [27], [28] signal conversion. Further more,
distinguished to the previous method [17], this method guar-
antees the improvement of both criteria with the increase
of overhead budget. In intuition, consider the extreme case
if we apply the restoration at every waveguide between any
two devices to compensate the loss, the resultant power
depletion can be minimized to 0.

A. Optical Power Depletion and Noise Robustness

We start with the background of the classic optical
synthesis method based on binary decision diagram (BDD)
[16], [17], [19], [29]. A BDD is a directed acyclic graph
that can represent a boolean function. As an example in
Figure 1a, BDD has two types of nodes, terminal node
and decision node. A 1-terminal node, representing the
functional output evaluation to be logic 1. A decision node
is functionally a 1× 2 crossbar switch, which is controlled
by a decision variable. The solid (dashed) edges correspond
to an assignment of the variable to be 1 (0). The classic
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Figure 1: BDD and the corresponding optical implementa-
tion.

Figure 2: Power distribution of a typical optical Y-branch
combiner.

BDD-based synthesis is demonstrated in Figure 1b. The
light (λ) from a laser source (or from the output of the
previous optical network) is streamed from the BDD top
node to the 1-terminal, where a photodetector (PD) (or
optical amplifier to the next computation stage) is located.
The synthesis replaces each BDD node by an optical 1× 2
crossbar, each controlled by a primary input. Waveguides
and combiners are used to connect the crossbars. When
there are multiple inputs to a crossbar, optical combiners
(CB) are used to merge the inputs. The output of the optical
network is a logical 1, if the PD can detects light at the 1-
terminal, otherwise it is a logical 0.

The classic BDD-based implementation suffers from cas-
cading optical power loss as the single input caused intrinsic
combiner loss and is thus prohibited from building larger-
scale functionalities. As shown in the simulated power
distribution in Figure 2, the Y-branch takes light from the
two ports on the right side and pass light to the left. In
the first figure, if two input ports have light, the output
power doubles each of the input power and there is almost
zero loss. In the second and third figure, if only one input
has light, due to the mode mismatch, half of the light
escape from the waveguide to the free space. Therefore,
there will be a -3dB (50%) power loss at the output.
The loss cascaded inevitably leads to an extremely weak
output signal indistinguishable from noises. Other sources
of optical power loss of optical logic circuits include: optical
switch loss, waveguide propagation and crossing loss. As
the latter is dependent on final physical placement and
routing, in this work, we focus on the optical loss induced
by optical switches and combiners. The proposed method
can be adopted to other various loss source. The type of
switches and choice of platforms is also not restricted.

We use L to denote the absolute optical power loss in dB.
In a BDD-based optical network, L can be defined for the
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node v as an optical switch (Lv), edge as an input branch
of a combiner (L(u,v)), path as a sub-network (Lv→u), or
the whole network (Lnet). The path loss is calculated by
adding the loss of all the components including combiners,
couplers and switches, along the path. The network loss is
defined as the greatest loss of all the paths from the network
input (BDD top node) to the network output (BDD terminal
node). Our goal of the synthesis is to improve the network
loss by using OE/EO converter to provide boosted optical
power at selected locations of a network.

B. Dynamic Programming for Optical Power Restoration

Given a certain optical power loss goal G > 0 in dB, the
optical loss restoration problem is defined as:

Minimize R =

|E|∑
i=1

xi (1)

s.t. Lnet < G (2)
xi ∈ {0, 1},∀i (3)

Each boolean variable xi represents an assignment of
restoration for a critical edge ei. If xi is 1, then the an
OE/EO converter is assigned to this edge; otherwise, the
edge is not assigned any converter. The objective R is the
number of OE/EO converters for restoration. Equation (2)
states the power loss of the whole BDD network, which is
defined by the minimum of all the path efficiency factor, is
smaller than the given target G. Note that each converter
has a determined detection threshold th measured in dB.
As shown in Figure 3a, the insertion of converters at two
edges boosts each power to the EO converter source power.
The boosting coefficient of a converter inserted at edge
(n1, n2) is gc = Ln2 The threshold is determined by both
the device detection limitation and the environmental noise.
If the power loss from the top node to some point is greater
than th, the converter is not able to be applied. We propose
a simple heuristic algorithm to this problem detailed in
Algorithm 1. As a start, the critical paths are computed
based on their power loss and the target G [30]. Then we
check each edge on the critical path, from top to bottom,
whether the threshold condition can be satisfied. If it is
the case, we apply the OE/EO converter at this edge for
restoration. Update of all the power loss of downstream
nodes is then required, so that certain previously non-
restorable edges can be restored due to this move. At any
point if the terminal power loss Ltop→1−terminal meets the
target loss, we finish the loop. Finally, the merge operation
is performed to further reduced redundant converters.

The merge operation merges the assigned converters of
edges (ni → n) with a single converter at the output of
the combiner connected to node n. The merge operation
is only effective if both conditions are satisfied: (1) the
merged point meets the noise threshold, and (2) the number
of converters after the merge becomes smaller. Note that the
first condition may not always satisfy during the merge op-
eration; otherwise, one can continue the operation till the 1-
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Figure 3: (a) OE/EO converter inserted at two edges (a→
c) and (b→ 1− terminal) (b) Merge operation example.

Algorithm 1 Optical Power Restoration.

Require: Target BDD function and and target loss G.
1: Compute critical path P ← {pi : Lpi

> G}
2: for Each critical paths pi sorted from top Lpi do
3: for Each critical edge ej in pi do
4: nin, nout ← input and output node of ej
5: if Ltop→nin

≤ th then . ej can be restored.
6: Apply restoration at edge ej
7: for nk ∈ {downstream of nin} do
8: Update Ltop→nk

9: if Inputs of nout is traversed then
10: Merge converter if condition is satisfied.
11: if Ltop→1−terminal < G then
12: break

terminal, resulting in one single converter. Figure 3b shows
the example where two edge (n1 → n) and (n2 → n)
meets the threshold before using any converters, and their
respective converters are merged to be 1; while (n3 → n)
does not meet such criterion and the converter on it cannot
be merged.

The simulation results are shown in Table I. The first
three columns summarized the benchmark name and the
number of primary outputs and the number of optical
switches based on the given ordered BDD. Column 4-6
show the number of OE/EO converters under corresponding
to each relative improvement, varying from 10dB, 12dB to
16dB. The threshold is set to be a relatively conservative
25dB. The bigger design do not necessarily need more
converters as the number of critical paths is not necessarily
greater. However, we notice the trend that in order to
improve more power, the number of OE/EO converters also
needs to increase. As was calculated in the last row, the
average converter numbers are 3.57% , 5.27%, 11.04% of
the total number of optical switches, respectively.

When the noise threshold is the dominating factor of th,
we perform the second set of experiments. Figure 4 plots
the number of converters with respect to different th of
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TABLE I: Simulation results with different optical power improve-
ment goals.

benchmark #PO #sw 10dB 12dB 16dB

dalu 16 1692 20 39 194
apex7 37 458 37 53 111
stpmotor 29 491 31 52 104
k2 43 2113 10 16 56
cps 102 2224 45 49 94
i5 66 672 44 78 152
x3 99 851 19 24 100
frg2 139 1981 30 47 58
pdc 40 960 43 75 66
spla 46 977 45 54 67
vda 39 1117 55 71 222
apex5 85 1410 89 118 166
simple spi 144 1473 70 100 177
x4 71 602 91 147 254
i2c 140 1836 44 71 260
example2 66 645 14 48 98

average 73.1 1257.1 44.9 66.3 138.7

ratio to #sw 3.57% 5.27% 11.04%
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Figure 4: Number of converters under different improve-
ment goals and noise threshold.

15, 25 and 40dB as well as different improvement goals.
Smaller threshold reflects a more noisy environment. For
example, in the most noisy environment, the threshold is
also the smallest 15dB in order for the signal to be detected
correctly. Intuitively, the number of converters increases
when the noise threshold becomes smaller.

III. OPTICAL NEURAL NETWORKS

In this section, we focus on the robustness and scala-
bility issues of recently proposed integrated ONN architec-
tures. We will experimentally demonstrate several software-
hardware co-design methodologies that can enable more
noise-robust and scalable ONN implementations.

A. Phase Noise Robustness

In the classical integrated ONN architecture, Mach-
Zehnder Interferometer (MZI) arrays are constructed to real-
ize MLP inference. Due to environmental changes, thermal
crosstalk, and manufacturing imperfactions, noise exists in
each MZI such that the phases of the output light signals
will be perturbed. Thus we refer to this noise as phase noise.

In each fully-connected layer of the MLP, matrix-vector
multiplication is performed. The optical implementation of
matrix multiplication is shown in Figure 5. Specifically,
consider an n-input channel, m-output channel layer, the
weight matrix W ∈ Rm×n is first decomposed using
singular value decomposition W = UΣV ∗, where U , V ∗

are m×m and n×n unitary matrices, respectively, and Σ
is an m× n diagonal matrix. Each of the unitary matrices
U and V ∗ can be further parametrized into the product of
a series of planar rotations,

U(n) = D

2∏
i=n

i−1∏
j=1

Rij , (4)

where D is an n× n diagonal matrix that only contains 1
or -1, Rij is an n × n identity matrix except for the four
entries at (i, i), (i, j), (j, i) and (j, j), which are replaced by
cosφ, sinφ, -sinφ, and cosφ. This planar rotation Rij can
be implemented with a 2×2 MZI, and its transfer function
is given by,(

y1
y2

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x1
x2

)
. (5)

Therefore, for an arbitary m × n matrix W , we can use
total n(n − 1)/2 + m(m − 1)/2 MZIs to build two MZI
arrays for each of the decomposed unitary matrices U and
V ∗. The diagonal matrix Σ can be simply realized by
attenuators/optical amplifiers.

…

……

Ri,j

in out

Figure 5: MZI array for unitary matrix.

The phase of the phase shifter on each MZI is theo-
retically given by φ = γv2, where γ is the device- and
temperature-related coefficient and v is the voltage control
of the thermal-optic phase shifter on the MZI. Thus, the
actual phase lag caused by a phase shifter is perturbed by
multiple noise sources. This phase noise can be approxi-
mately modeled as a gaussian noise N (0, σ2). To evaluate
the error caused by phase noise, we first demonstrate the `2
distance between random unitary matrices w/o and w/ phase
noise injected ||U −Un||22. Figure 6 shows that larger phase
noise and larger unitary matrix size will both contribute to
larger error (`2 distance) of the unitary matrix. This matrix
size-related error caused by phase noise could limit the
ONN scale, as it may cause significant accuracy degradation
when implementing relatively large matrices. To investigate
the relation between model accuracy and phase noise, we
inject phase noise with different σ into a pre-trained three-
layer MLP. The model accuracy is tested on a downsampled
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Figure 6: `2 difference of various-size unitary matrices
under different phase noise standard deviations. Black, blue,
red boxes represent noise standard deviation of 0.05, 0.02,
and 0.01, respectively.

Figure 7: Model accuracy on MNIST dataset with different
exposure rate and phase noise standard deviations. The
three-layer MLP setup is (10×10)-64-64-10.

MNIST dataset. We expose different portions of MZIs to
noise to demonstrate the impact of phase perturbation on
ONN performance. Figure 7 illustrates noise robustness of a
three-layer MLP to different phase noises. When the phase
noise std. is smaller than 0.01, the accuracy degradation
is negligible (<1%), but the accuracy drops drastically as
larger noise is injected. We also notice that when fewer
MZIs are exposed to phase noise, higher testing accuracy
the model will achieve. This enables a possible methodol-
ogy to improve robustness by cutting down the number of
components used in the hardware implementation.

As different layers in the MLP will extract different
levels of features, the sensitivity to phase noise will also
vary from layer to layer. We individually inject phase noise
into each layer in a five-layer MLP and show its resultant
inference accuracy in Fig. 8. The first several layers are
more sensitive to phase noise compared with deeper layers,
because shallow layers are closer to inputs and responsible
to extract low-level features, which are of vital significance

Figure 8: Model accuracy on MNIST dataset when injecting
phase noise into different layers. The five-layer MLP setup
is (10×10)-64-64-64-64-10.
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Figure 9: Noise robustness of (a) the classic architecture
(b) the proposed architecture with the (14×14)-150-150-10
setup.

to the model expressivity. In addition, the first layer often
consists of a large input feature dimension, which will be
more sensitive to noise according to the above discussion on
unitary matrix size. Therefore, selective protection to MZIs
in the shallow layers would be a good strategy to mitigate
noise robustness issues of ONNs.

This set of experiments intends to demonstrate that by
decreasing the number of optical components, the neural
network robustness can also be improved. As depicted in
the box plots of Figure 9, there are three random noise
amplitude settings imposed upon the phases of MZI: 0.020,
0.025 and 0.050. Each conforms with a truncated norm
distribution. For each noise setting, we generate 20 noisy
samples for both the previous architecture (Figure 9a) and
the slimmed architecture (Figure 9b). Taking (14×14)-150-
150-10 as an example, it can be seen that the accuracy
distribution of the slimmed architecture not only has higher
average and geometric means but also a smaller variation
range between the best and worst among all the samples.

Another approach to improving ONN robustness is to add
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Figure 10: Model accuracy on MNIST dataset when usign
different weight decay rates λ. The three-layer MLP setup
is (10×10)-64-64-10.

weight regularization term in the learning objective,

L = Lbase +
∑
||W ||22, (6)

where Lbase is the basic loss function. `2 regularization
penalizes weights with large norms and mitigates overfitting
problems, which could lead to a more smooth solution
space and thus less sensitivity to noise perturbation. This
regularization term is equivalent to performing weight decay
in the optimization step,

W t+1 = W t − η(∇Lbase + λ
∑

W t), (7)

where η is the learning rate and λ is the weight decay rate.
We train a tree-layer MLP with various weight decay rates,
and plot the testing accuracy under different phase noise
standard deviations in Fig. 10. The experimental results
show that training with weight decay can regularize the
neural networks and achieve higher testing accuracy than
the baseline w/o weight decay. This regularization approach
introduces minimum training overhead and can effectively
improve the robustness of ONNs to phase noise.

B. ONN Scalability

The scalability issue of ONNs attributes to two aspects:
Area cost and model performance. We will discuss these
two aspects individually together with corresponding design
methodologies.

In the classical integrated ONN architecture, total m(m−
1)/2+n(n−1)/2+max (m,n) MZIs will be used to build
an m×n weight matrix. This hardware complexity can limit
the actually implementation scale of ONNs, especially when
the size of an MZI reaches up to ∼100 µm. For instance,
a typical on-chip MZI array will have approximately 100
MZIs at most, which therefore requires to partition the
matrix multiplication into blocks with extra scheduling
overhead and larger latencies. To improve the area efficiency
and thus scalability of ONN, novel architectures can be
adopted to cut down its area cost. The proposed slimmed
ONN architecture can cut down 15-38% optical components

and thus improve the area cost of ONNs. This architec-
ture adopts a software-hardware co-design methodology to
substitute the original SVD with a TUΣ decomposition
method. In this way, one of the area-expensive unitary
blocks V ∗ is replaced by a sparse tree network T . The
sparse tree network T adapts the difference between input
channel m and output channel n, with merely O(n) MZIs
adopted. Consider that the theoretical hardware cost of this
slimmed architecture is n(n+1)/2 MZIs, the scalability of
ONNs is thus improved, enabling the implementation of a
more compact integrated ONN.

Another scalability issue that faces ONNs is related to the
aforementioned robustness issue. As we discussed above,
larger unitary matrices will accumulate larger errors when
phase noise is injected. Hence, directly mapping a large
neural network into MZI arrays in a flattened way leads
to dramatically decreasing signal-to-noise ratio, which will
severely harm the inference performance. Similarly, we
can adopt the slimmed architecture and network pruning
technique to cut down the component utilization and reduce
the number of noise sources to improve the scalability. Also,
environmental noises can be modeled and considered in the
training flow with weight regularization strategy to obtain
a more robust solution. This noise-aware training method
has the potential to train a fault-tolerant ONN with better
scalability.

Another possible approach to resolving this scalability
issue is to strike a balance between efficiency and perfor-
mance through tiled matrix multiplication algorithm. If the
matrix multiplication can be performed in a tiled way, each
small sub-matrix multiplication can be mapped to a small-
scale MZI array such that the area cost is well-controlled
and the noise error will be constrained in an acceptable
range as the phase error will only impact one particular
sub-matrix. We partition a 64× 64 weight matrix W with
different size of sub-matrices, from 4 to 64, and Fig. 11
plots the `2 distance between the original matrix W and
Wn with phase noise injected in each block. It can be seen
that by using small blocks, the total error caused by phase
noise will reduce accordingly, which offers a good reason
to adopt blocking matrix multiplication for better scalability
of ONNs. Even though this blocking matrix multiplication
method requires to perform the partial product accumulation
in electronics with extra overhead, this could still benefit the
overall performance and throughput if the optical computing
part can offer orders-of-magnitude faster matrix multiplica-
tions with reasonable fidelity.

IV. CONCLUSION

Robustness and scalability have been two major obstacles
of building large scale and practical optical computing
circuits. This paper discusses the two issues for two repre-
sentative optical computing paradigms: logic computing and
neural networks. Scalability is associated with the bulkiness
which is inherent for optics. But more crucially, as discussed
in the previous sections, they are highly correlated due
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Figure 11: `2 distance between a 64×64 weight matrix w/
and w/o phase noise injected. The matrix is partitioned into
various size of blocks. Black, blue, red boxes represent
phase noise standard deviation of 0.05, 0.02, and 0.01,
respectively.

to the cascaded power loss or noise error, both a result
of the lack of signal restoration and isolation in optics.
Logic computing and neural networks have shared proper-
ties while still demonstrating unique features that requires
specific ways to approach. In this paper, for optical logic
circuit, we have discussed automated design techniques
by introducing the restoration into optics using OE/EO
converters. For optical neural networks, we have studied
the noise sensitivity under different situations. Automated
learning and co-design methodologies were presented to
compensate both issues.
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